OxTalks will soon be transitioning to Oxford Events (full details are available on the Staff Gateway). A two-week publishing freeze is expected in early Hilary to allow all events to be migrated to the new platform. During this period, you will not be able to submit or edit events on OxTalks. The exact freeze dates will be confirmed as soon as possible.
If you have any questions, please contact halo@digital.ox.ac.uk
The high-density hard-core configuration model has attracted attention for quite a long time. The first rigorous results about the phase transition on a lattice with a nearest-neighbor exclusion where published by Dobrushin in 1968. In 1979, Baxter calculated the free energy and specified the critical point on a triangular lattice with a nearest-neighbor exclusion; in 1980 Andrews gave a rigorous proof of Baxter’s calculation with the help of Ramanujan’s identities. On a square lattice the nearest-neighbor exclusion critical point has been estimated from above and below in a series by a number of authors.
We analyze the hard-core model on a triangular lattice and identify the extreme Gibbs measures (pure phases) for high densities. Depending on arithmetic properties of the hard-core diameter $D$, the number of pure phases equals either $D^2$ or $2D^2$. A classification of possible cases can be given in terms of Eisenstein primes.
If the time allows, I will mention 3D analogs of some of these results.
This is a joint work with A Mazel and I Stuhl; cf. arXiv:1803.04041. No special knowledge will be assumed from the audience.