On 28th November OxTalks will move to the new Halo platform and will become 'Oxford Events' (full details are available on the Staff Gateway).
There will be an OxTalks freeze beginning on Friday 14th November. This means you will need to publish any of your known events to OxTalks by then as there will be no facility to publish or edit events in that fortnight. During the freeze, all events will be migrated to the new Oxford Events site. It will still be possible to view events on OxTalks during this time.
If you have any questions, please contact halo@digital.ox.ac.uk
The circadian clock generates ~24h rhythms everyday via a transcriptional-translational negative feedback loop. Although this involves the daily entry of repressor molecules into the nucleus after random diffusion through a crowded cytoplasm, the period remains extremely consistent. In this talk, I will describe how we identified a key molecular mechanism for such robustness of the circadian clock against spatio-temporal noise by analyzing spatio-temporal timeseries data of clock molecules. Furthermore, I will illustrate a systemic modeling approach that can identify hidden molecular interactions from oscillatory timeseries with an example of a circadian clock and tumorigenesis system. Finally, I will talk about a fundamental question underlying the model-based time-series analysis: “Can we always fit a model to given timeseries data as long as the number of parameters is large?”. That is, is Von Neumann’s quote “With four parameters I can fit an elephant, and with five I can make him wiggle his trunk” true?