OxTalks will soon move to the new Halo platform and will become 'Oxford Events.' There will be a need for an OxTalks freeze. This was previously planned for Friday 14th November – a new date will be shared as soon as it is available (full details will be available on the Staff Gateway).
In the meantime, the OxTalks site will remain active and events will continue to be published.
If staff have any questions about the Oxford Events launch, please contact halo@digital.ox.ac.uk
The circadian clock generates ~24h rhythms everyday via a transcriptional-translational negative feedback loop. Although this involves the daily entry of repressor molecules into the nucleus after random diffusion through a crowded cytoplasm, the period remains extremely consistent. In this talk, I will describe how we identified a key molecular mechanism for such robustness of the circadian clock against spatio-temporal noise by analyzing spatio-temporal timeseries data of clock molecules. Furthermore, I will illustrate a systemic modeling approach that can identify hidden molecular interactions from oscillatory timeseries with an example of a circadian clock and tumorigenesis system. Finally, I will talk about a fundamental question underlying the model-based time-series analysis: “Can we always fit a model to given timeseries data as long as the number of parameters is large?”. That is, is Von Neumann’s quote “With four parameters I can fit an elephant, and with five I can make him wiggle his trunk” true?