OxTalks will soon be transitioning to Oxford Events (full details are available on the Staff Gateway). A two-week publishing freeze is expected in early Hilary to allow all events to be migrated to the new platform. During this period, you will not be able to submit or edit events on OxTalks. The exact freeze dates will be confirmed as soon as possible.
If you have any questions, please contact halo@digital.ox.ac.uk
To Bayes or not to Bayes?
In many disciplines (e.g., epidemiology, genetics, medicine, many branches of social science) Bayesian statistics are used instead of Maximum Likelihood (ML, by Ronald Aylmer Fisher). Bayesian statistics gives the inferential probability of the parameter estimates from the posterior distribution, given the data. ML gives the sampling probability of the data given the model, also termed “Null Hypothesis Statistical Testing” (NHST). History shows how sampling probability and inferential probability have been used interchangeably, sometimes with serious consequences. Bayesian statistics has many advantages over NHST e.g., (1) it is logical in its philosophy, and (2) it does not rely on large sample theory. Modern software, both free (e.g., R brms) and commercial ones (e.g., SPSS, Mplus), now include Bayesian algorithms. Examples of logical reasoning, advantages of using the Bayesian estimator, and estimation of posterior probabilities using simulated and real-world data are presented in the talk.