During Michaelmas Term, OxTalks will be moving to a new platform (full details are available on the Staff Gateway).
For now, continue using the current page and event submission process (freeze period dates to be advised).
If you have any questions, please contact halo@digital.ox.ac.uk
The oldest parts of the continental crust generate between 0.36–2.273×1011 moles H2 per year through water-rock reactions and radiolysis [1]. Over geological timescales the natural hydrogen generated would supply society’s current oil-equivalent needs with clean energy for well over 100,000 years. Natural (gold) hydrogen is found in many locations globally [1], but until recently has not been the focus of resource exploration. We show how Helium, generated during radiolysis, provides a key reference for understanding:
1. Whether the hydrogen generated in the deep crust is preserved [1,2]? 2. How and at what rate hydrogen escapes from the continental crust [3,4]? 3. Where the migrating crustal hydrogen might be focussed and accessibly trapped (and not consumed chemically or biologically) [3,5].
These provide the key steps in addressing whether, and where, natural (gold) hydrogen might provide a viable and significant clean energy resource.
[1] B. Sherwood Lollar, T. C. Onstott, G. Lacrampe-Couloume & C. J. Ballentine. Nature (2014) 516, 397-382
[2] O. Warr, B Sherwood Lollar, J. Fellowes, C.N. Sutcliffe, J.M. McDermott, G. Holland*, J.C. Mabry, C.J. Ballentine. Geochimica et Cosmochimica Acta 222 (2018) 340-362
[3] A Cheng, B Sherwood Lollar, O Warr, G Ferguson, E Idiz, SOC Mundle, PH Barry, DJ Byrne, JC Mabry, CJ Ballentine, Earth and Planetary Science Letters 574, 117175
[4] D. Danabalan, J.G. Gluyas, C.G. Macpherson, T.H. Abraham-James, J.J. Bluett, P.H. Barry, & C.J. Ballentine. The Principles of Helium Exploration. Petroleum Geoscience (2021) in Press